Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 321: 117529, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042384

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma longa, known as turmeric, is an herbaceous perennial plant belonging to the genus Curcuma. It is dispersed throughout tropical and subtropical regions worldwide. Since ancient times, turmeric has been used as an ethnomedicinal plant in the Ayurvedic system, particularly in Asian countries. Rhizomes of turmeric possess several pharmacological properties that give high value as a medicinal remedy for treating a range of conditions, including inflammation, pain, allergies, and digestive issues. Moreover, turmeric leaves and pseudostems also contain a variety of health-enhancing secondary metabolites, such as curcumin, flavonoids, and other phenolic compounds, which exhibit anti-inflammatory, antitumor, antibacterial, and antioxidant properties. AIM OF THE STUDY: Allergic diseases are a group of immune-mediated disorders mainly caused by an immunoglobulin E (IgE)-dependent immunological response to an innocuous allergen. Therefore, this study aimed to investigate the effect of leaves and pseudostems extract of turmeric (TLSWE-8510) on IgE/bovine serum albumin (BSA)-stimulated allergic responses in mouse bone marrow-derived cultured mast cells (BMCMCs) and passive cutaneous anaphylaxis (PCA) in BALB/c mice. MATERIALS AND METHODS: The effect of TLSWE-8510 on mast cell degranulation has been evaluated by investigating the release of ß-hexosaminidase and histamine in IgE/BSA-stimulated BMCMCs. Additionally, anti-allergic properties of TLSWE-8510 on IgE/BSA-stimulated BMCMCs were investigated using suppression of nuclear factor-kappa B (NF-κB), and spleen tyrosine kinase (Syk)-linker for T-cell activation (LAT)-extracellular-signal-regulated kinase (ERK)-GRB2 associated binding protein 2 (Gab2) signaling pathway and downregulation of allergy-related cytokines and chemokines expression. Furthermore, in vivo, studies were conducted using IgE-mediated PCA in BALB/c mice. RESULTS: TLSWE-8510 treatment significantly inhibited the degranulation of IgE/BSA-stimulated BMCMCs by inhibiting the release of ß-hexosaminidase and histamine dose-dependently. Additionally, TLSWE-8510 reduced the expression of high-affinity IgE receptors (Fc epsilon receptor I-FcεRI) on the surface of BMCMCs and the binding of IgE to FcεRI. Besides, the expression of cytokines and chemokines is triggered by IgE/BSA stimulation via activating the allergy-related signaling pathways. TLSWE-8510 dose-dependently downregulated the mRNA expression and the production of allergy-related cytokines (interleukin (IL)-1ß, IL-3, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ), and chemokines (thymus and activation-regulated chemokine (TARC), and regulated upon activation, normal T cell expressed and secreted (RANTES)) by regulating the phosphorylation of downstream signaling molecules, NF-κB, and Syk, LAT, ERK and Gab2 in IgE/BSA-stimulated BMCMCs. Moreover, PCA reaction in IgE/BSA-stimulated BALB/c mice ears was effectively decreased by TLSWE-8510 treatment in a dose-dependent manner. CONCLUSIONS: These results collectively demonstrated that TLSWE-8510 suppressed mast cell degranulation by inhibiting the release of chemical mediators related to allergies. TLSWE-8510 downregulated the allergy-related cytokines and chemokines expression and phosphorylation of downstream signaling molecules in IgE/BSA-stimulated BMCMCs. Furthermore, in vivo studies with IgE-mediated PCA reaction in the BALB/c mice ears were attenuated by TLSWE-8510 treatment. These findings revealed that TLSWE-8510 has the potential as a therapeutic agent for the treatment of allergic diseases.


Assuntos
Anafilaxia , Hipersensibilidade , Camundongos , Animais , Imunoglobulina E , Curcuma , Soroalbumina Bovina , NF-kappa B/metabolismo , Histamina/metabolismo , Mastócitos , Anafilaxia Cutânea Passiva , Camundongos Endogâmicos BALB C , Medula Óssea , Hipersensibilidade/tratamento farmacológico , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Quimiocinas/metabolismo , Degranulação Celular
2.
Mar Drugs ; 21(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37367672

RESUMO

Brown seaweed is a rich source of fucoidan, which exhibits a variety of biological activities. The present study discloses the protective effect of low molecular weight fucoidan (FSSQ) isolated from an edible brown alga, Sargassum siliquastrum, on lipopolysaccharide (LPS)-stimulated inflammatory responses in RAW 264.7 macrophages. The findings of the study revealed that FSSQ increases cell viability while decreasing intracellular reactive oxygen species production in LPS-stimulated RAW 264.7 macrophages dose-dependently. FSSQ reduced the iNOS and COX-2 expression, inhibiting the NO and prostaglandin E2 production. Furthermore, mRNA expression of IL-1ß, IL-6, and TNF-α was downregulated by FSSQ via modulating MAPK and NF-κB signaling. The NLRP3 inflammasome protein complex, including NLRP3, ASC, and caspase-1, as well as the subsequent release of pro-inflammatory cytokines, such as IL-1ß and IL-18, release in LPS-stimulated RAW 264.7 macrophages was inhibited by FSSQ. The cytoprotective effect of FSSQ is indicated via Nrf2/HO-1 signaling activation, which is considerably reduced upon suppression of HO-1 activity by ZnPP. Collectively, the study revealed the therapeutic potential of FSSQ against inflammatory responses in LPS-stimulated RAW 264.7 macrophages. Moreover, the study suggests further investigations on commercially viable methods for fucoidan isolation.


Assuntos
NF-kappa B , Sargassum , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Sargassum/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peso Molecular , Macrófagos , Transdução de Sinais , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Células RAW 264.7 , Inflamação/tratamento farmacológico
3.
Mar Drugs ; 20(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135752

RESUMO

Polysiphonia morrowii is a well-known red alga that has promising pharmacological characteristics. The current study evaluates the protective effect of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) isolated from P. morrowii on tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated inflammation and skin barrier deterioration in HaCaT keratinocytes. The anti-inflammatory effect of BDB in TNF-α/IFN-γ-stimulated HaCaT keratinocytes is evaluated by investigating nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways, inflammatory cytokines, and chemokines. Further, the interaction between BDB and the skin barrier functions in stimulated HaCaT keratinocytes is investigated. The findings of the study reveal that BDB dose-dependently increases cell viability while decreasing intracellular reactive oxygen species (ROS) production. BDB downregulates the expression of inflammatory cytokines, interleukin (IL)-6, -8, -13, IFN-γ, TNF-α, and chemokines, Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cells expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC) by modulating the MAPK and NF-κB signaling pathways in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. Furthermore, BDB increases the production of skin hydration proteins and tight junction proteins in stimulated HaCaT keratinocytes by preserving skin moisturization and tight junction stability. These findings imply that BDB exhibits a protective ability against inflammation and deterioration of skin barrier via suppressing the expression of inflammatory signaling in TNF-α/IFN-γ-stimulated HaCaT keratinocytes.


Assuntos
Benzaldeídos , Queratinócitos , Rodófitas , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Benzaldeídos/farmacologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucinas/metabolismo , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rodófitas/química , Fator de Transcrição STAT1/metabolismo , Proteínas de Junções Íntimas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Biol Macromol ; 218: 102-114, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863660

RESUMO

Methodologies for synthesizing drug-loaded alginate nanocapsules were optimized and indomethacin and phloroglucinol loading capacities were studied. Their biological effects were studied for ameliorating fine dust (FD) induced detrimental effects in keratinocytes. The 1 % alginate to oil phase ratio of 1:20 was the optimal parameter for water in oil emulsification. The oil phase was optimized to contain sunflower oil: span 80 ratios of 17:3. Nanocapsule drug encapsulation efficiencies were 36.91 ± 5.56 and 32.41 ± 4.05 % respectively for phloroglucinol (EG2P) and indomethacin (EG2I) while the loading capacities were 25.28 ± 3.36 and 23.15 ± 2.84 %. Dried nanocapsules indicated a 40-140 nm diameter range while their hydrodynamic diameter was 989.69 nm at pH 7.0. Nanocapsules swelling was pH-dependent and in releasing media of pH values 4.5, 7.4, and 8.5, the drug release indicated a complex mechanism of swelling, diffusion, and erosion while at pH 2.0 the drug release followed the non-Fickian release. EG2P and EG2I treatment dose-dependently lowered FD-induced intracellular ROS production, apoptosis and inflammatory responses mediated through the NF-κB pathway in FD stimulated HaCaT keratinocytes and reduced epidermal barrier degradation. Further research could investigate the use of this technique in formulating cosmeceuticals containing drug-loaded alginate nanocapsules for achieving controlled release.


Assuntos
Nanocápsulas , Alginatos , Poeira , Indometacina , Queratinócitos , Tamanho da Partícula , Floroglucinol , Água
5.
Antioxidants (Basel) ; 11(8)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35892631

RESUMO

Sargassum horneri is a well-known edible brown alga that is widely abundant in the sea near China, Korea, and Japan and has a wide range of bioactive compounds. Fucosterol (FST), which is a renowned secondary metabolite in brown algae, was extracted from S. horneri to 70% ethanol, isolated via high-performance liquid chromatography (HPLC), followed by the immiscible liquid-liquid separation, and its structure was confirmed by NMR spectroscopy. The present study was undertaken to investigate the effects of FST against oxidative stress, inflammation, and its mechanism of action in tumor necrosis factor (TNF)-α/ interferon (IFN)-γ-stimulated human dermal fibroblast (HDF). FST was biocompatible with HDF cells up to the 120 µM dosage. TNF-α/IFN-γ stimulation significantly decreased HDF viability by notably increasing reactive oxygen species (ROS) production. FST dose-dependently decreased the intracellular ROS production in HDFs. Western blot analysis confirmed a significant increment of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) involvement in FST-treated HDF cells. In addition, the downregulation of inflammatory mediators, molecules related to connective tissue degradation, and tissue inhibitors of metalloproteinases were identified. TNF-α/IFN-γ stimulation in HDF cells increased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) mediators, and its phosphorylation was reduced with the treatment of FST in a dose-dependent manner. Results obtained from western blot analysis of the NF-κB nuclear translocation were supported by immunocytochemistry results. Collectively, the outcomes suggested that FST significantly upregulates the Nrf2/HO-1 signaling and regulates NF-κB/MAPK signaling pathways to minimize the inflammatory responses in TNF-α/IFN-γ-stimulated HDF cells.

6.
Antioxidants (Basel) ; 11(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35624876

RESUMO

Sasa borealis (Hack.) Makino & Shibata or broad-leaf bamboo is famous for its richness of bioactive natural products and its uses in traditional medicine for its anti-inflammatory, diuretic, and antipyretic properties and preventive effects against hypertension, arteriosclerosis, cardiovascular disease, and cancer. The present study investigated the antioxidant activity of S. borealis hot water extract (SBH) and its effects in ameliorating hydrogen peroxide-induced oxidative stress, using an African green monkey kidney epithelial cell line (Vero). Known polyphenols in SBH were quantified by HPLC analysis. SBH indicated a dose-dependent increase for reducing power, ABTS+ (IC50 = 96.44 ± 0.61 µg/mL) and DPPH (IC50 = 125.78 ± 4.41 µg/mL) radical scavenging activities. SBH markedly reduced intracellular reactive oxygen species (ROS) generation in the Vero cells and increased the protective effects against H2O2-induced oxidative stress by reducing apoptosis. Other than the direct involvement in neutralizing ROS, metabolites in SBH were also found to induce NRF2-mediated production of antioxidant enzymes, HO-1, and NQO1. These findings imply that S. borealis hot water extract can be utilized to create nutraceutical and functional foods that can help to relieve the effects of oxidative stress in both acute and chronic kidney injury.

7.
Int J Biol Macromol ; 202: 681-690, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35122802

RESUMO

Alginate is a biopolymer used in numerous biomedical applications. The current work describes the purification of alginate from Sargassum horneri and method optimization for formulating drug-loaded microparticles by water-in-oil emulsification/internal gelation. Molecular weights of S. horneri alginate were ranging 50-70 kDa. Among 16 method optimizations, the F4 method was selected for further studies based on shape descriptor parameters which indicated, 0.24 ± 0.01 circularity, 0.80 ± 0.11 roundness, 1.27 ± 0.20 aspect ratio between long and short axis, and less aggregation in PBS. Processing parameters of the F4 method were; CaCO3/alginate ratio of 20/1 (w/w), 5% span 80 in oil (v/v), water/oil phase ratio of 1/20 (v/v), and 1000 rpm emulsification speed. Hollow pores were visible on the surface of dehydrated F4 microparticles. F4 microparticles indicated 41.84 ± 2.93 and 45.86 ± 1.65% encapsulation efficiencies for phloroglucinol (F4P) and indomethacin (F4I) with 32.69 ± 1.35 and 31.69 ± 1.98% loading capacities. These microparticles were found to be desirable for extending drug release over short periods (0-3 days) under pH 2.0-7.4. F4P and F4I were effective in suppressing intracellular reactive oxygen species in FD exposed HaCaT cells while increasing cell viability over 24 - 48 h duration.


Assuntos
Alginatos , Sargassum , Alginatos/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Microesferas , Tamanho da Partícula
8.
Foods ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159570

RESUMO

The present study discloses the identification of phenolic compounds in Moringa oleifera hot water extract (MOH) and the evaluation of its antioxidant activity on H2O2-induced oxidative stress in Vero cells. Upon analysis, MOH was found to contain phenolic compounds and indicated 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radical scavenging with IC50 values of 102.52 and 122.55 µg/mL, respectively. The ferric reducing antioxidant power (FRAP) of MOH indicated a dose-dependent increase with a maximum absorbance at 125 µg/mL and the oxygen radical absorbance capacity (ORAC) of MOH was 1004.95 µmol TE/mg. Results showed that MOH dose-dependently reduced intracellular ROS generation in H2O2-stimulated Vero cells while increasing the cell viability. Fluorescence microscopy and flowcytometric analyses have supported the above findings. MOH markedly suppressed the H2O2-induced mitochondrial depolarization and apoptosis through suppression of the mitochondrial-mediated apoptosis pathway and activated the Nrf2/HO-1 signaling pathway by possibly involving H2O2 generation in cell media. Findings of western blot were supported by immunocytochemistry of Nrf2 nuclear translocation. Thus, MOH bioactivity would potentiate its applications in manufacturing functional food.

9.
Mar Drugs ; 20(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200646

RESUMO

Recent studies have revealed that marine brown seaweeds contain numerous bioactive compounds which exhibit various bioactivities. The present study investigated the effect of low molecular weight fucoidan (SCF) isolated from Sargassum confusum, a brown alga, on inflammatory responses and oxidative stress in HaCaT keratinocytes stimulated by tumor necrosis factor (TNF)-α/interferon (IFN)-γ. SCF significantly increased the cell viability while decreasing the intracellular reactive oxygen species (ROS) production in TNF-α/IFN-γ-stimulated HaCaT keratinocytes. In addition, SCF effectively reduced inflammatory cytokines (interleukin (IL)-1ß, IL-6, IL-8, IL-13, TNF-α, and IFN-γ) and chemokines (Eotaxin, macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)) expression, by down-regulating the expression of epithelial and epidermal innate cytokines (IL-25, IL-33, and thymic stromal lymphopoietin (TSLP)). Furthermore, SCF suppressed the activation of TNF-α/IFN-γ-stimulated mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways, while activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The cytoprotective effect of SCF against TNF-α/IFN-γ stimulation was considerably reduced upon inhibition of HO-1 activity by ZnPP. Overall, these results suggest that SCF effectively suppressed inflammatory responses and oxidative stress in TNF-α/IFN-γ-stimulated HaCaT keratinocytes via activating the Nrf2/HO-1 signaling pathway.


Assuntos
Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/farmacologia , Sargassum/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/patologia , Interferon gama/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Polissacarídeos/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
10.
Mar Drugs ; 21(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662185

RESUMO

Prolonged exposure to fine dust (FD) increases the risk of skin inflammation. Stimulated epidermal cells release growth factors into their extracellular environment, which can induce inflammation in dermal cells. Algae are considered rich sources of bioactive materials. The present study emphasized the effect of low-molecular-weight fucoidan isolated from Sargassum confusum (LMF) against FD-induced inflammation in HaCaT keratinocytes and underneath fibroblasts (HDFs) in an integrated culture model. HDFs were treated with media from FD-stimulated HaCaT with LMF treatments (preconditioned media). The results suggested that FD increased the oxidative stress in HaCaT, thereby increasing the sub-G1 phase of the cell cycle up to 587%, as revealed via flow cytometric analysis. With preconditioned media, HDFs also displayed oxidative stress; however, the increase in the sub-G1 phase was insignificant compared with HaCaT. LMF dose-dependently regulated the NF-κB/MAPK signaling in HaCaT. Furthermore, significant downregulation in NF-κB/MAPK signaling, as well as inflammatory cytokines, tissue inhibitors of metalloproteinases, matrix metalloproteinases, and reduction in relative elastase and collagenase activities related to the extracellular matrix degeneration were observed in HDFs with a preconditioned media treatment. Therefore, we concluded that HDFs were protected from inflammation by preconditioned media. Continued research on tissue culture and in vivo studies may reveal the therapeutic potential of LMF.


Assuntos
Antineoplásicos , Poeira , Humanos , NF-kappa B/metabolismo , Queratinócitos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antineoplásicos/farmacologia , Fibroblastos , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...